A steroid derivative with paclitaxel-like effects on tubulin polymerization.
نویسندگان
چکیده
The endogenous estrogen metabolite 2-methoxyestradiol has modest antimitotic activity that may result from a weak interaction at the colchicine binding site of tubulin, but it nevertheless has in vivo antitumor activity. Synthetic efforts to improve activity led to compounds that increased inhibitory effects on cell growth, tubulin polymerization, and binding of colchicine to tubulin. This earlier work was directed at modifications in the steroid A ring, which is probably analogous to the colchicine tropolonic C ring. One of the most active analogs prepared was 2-ethoxyestradiol (2EE). We report here that different modifications in the steroid B ring of 2EE yield compounds with two apparently distinct modes of action. Simple expansion of the B ring to seven members resulted in a compound comparable to 2EE in its ability to inhibit tubulin polymerization and colchicine binding to tubulin. Acetylation of the hydroxyl groups in this analog and in 2EE essentially abolished these inhibitory properties. The introduction of a ketone functionality at C6, together with acetylation of the hydroxyls at positions 3 and 17, produced a compound with activity similar to that of paclitaxel, in that the agent enhanced tubulin polymerization into polymers that were partially stable at 0 degrees C. The acetyl group at C17, but not that at C3, was essential for this paclitaxel-like activity.
منابع مشابه
Combinations of paclitaxel and vinblastine and their effects on tubulin polymerization and cellular cytotoxicity: characterization of a synergistic schedule.
Paclitaxel (PTX) and vinblastine (VBL) represent 2 classes of drugs that target tubulin but have separate binding properties and opposing mechanisms of action. To evaluate the potential use of these agents together in a chemotherapeutic regimen, we investigated their effects on the dynamics of tubulin polymerization and cellular cytotoxicity, when administered singly or in combination. In human...
متن کاملMolecular dynamics and tubulin polymerization kinetics study on 1,14-heterofused taxanes: evidence of stabilization of the tubulin head-to-tail dimer-dimer interaction.
The effects on tubulin dynamics of paclitaxel, ortataxel and two recently developed taxol derivatives bearing a five-membered heterocyclic ring fused at the 1,14 position were analysed by means of molecular dynamic simulations and the MM-PBSA approach. Tubulin polymerization kinetics and microtubule morphology assays were also conducted, providing support to computational results. In particular...
متن کاملTaccalonolide binding to tubulin imparts microtubule stability and potent in vivo activity.
The taccalonolides are highly acetylated steroids that stabilize cellular microtubules and overcome multiple mechanisms of taxane resistance. Recently, two potent taccalonolides, AF and AJ, were identified that bind to tubulin directly and enhance microtubule polymerization. Extensive studies were conducted to characterize these new taccalonolides. AF and AJ caused aberrant mitotic spindles and...
متن کاملPaclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77.
We reported previously that Bcl-2 is paradoxically down-regulated in paclitaxel-resistant cancer cells. We reveal here that paclitaxel directly targets Bcl-2 in the loop domain, thereby facilitating the initiation of apoptosis. Molecular modeling revealed an extraordinary similarity between the paclitaxel binding sites in Bcl-2 and beta-tubulin, leading us to speculate that paclitaxel could be ...
متن کاملTargeting of tubulin polymerization and induction of mitotic blockage by Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) in human cervical cancer HeLa cell
BACKGROUND Microtubule Targeting Agents (MTAs) including paclitaxel, colchicine and vinca alkaloids are widely used in the treatment of various cancers. As with most chemotherapeutic agents, adverse effects and drug resistance are commonly associated with the clinical use of these agents. Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H- benzo[d]imidazole-5-carboxylate (MBIC), a benzimidazole derivative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 57 3 شماره
صفحات -
تاریخ انتشار 2000